Wholesale Solar Logo
You're logged in as a dealer. Where applicable, special dealer pricing is shown with a purple "Add to Quote" button instead of the blue "Add to Cart" button.

Wholesale Solar Panels

Solar Panels - Choose from a variety of brands like Astronergy, Suniva, Solarland and SolarWorld

Packaged Solar Power Systems

Packaged Systems - Complete solar power package solutions for offgrid, gridtie, backup power, boats, RVs, telecommunications and more!

Wholesale Solar Specials and Sales

Specials - Check out items currently on sale or items like refurbished inverters with special pricing.

Pre-wired Solar Power Centers

Power Centers - Wholesale Solar offers prewired and tested inverter systems for offgrid and backup power applications.

Backup Power

Backup Power - Plug n Play systems provide emergency electrical power for your home or business when the grid goes down.

Wholesale Solar Information Center

Information Center - Information related to installing solar. Use the system sizing calculators to help size your system.

"Wholesale Solar is 100% employee owned. Each of us has a personal stake in providing outstanding service to our customers. We thrive on your success!" -Allie, Employee Owner

Welcome to Wholesale Solar

We are your source for discount prices on solar panels and renewable energy products for home power, back-up power, solar & wind power, off-grid & grid intertied residential, marine and RV power systems. We feature both retail and wholesale pricing.

We design and sell solar panel systems for projects large and small, for homeowners and do-it-yourselfers, contractors, installers, electricians, and developers. Call one of our experienced solar design techs to talk about your project at 1-800-472-1142. If you have your most recent electric bill handy, we'll be able to get started with the design process right away.

Discount Pricing on Pallets of Solar Panels

Model Brand Part # Watts Quantity Per Pallet Total Pallet Watts Price Per Watt Price
Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Pallet (22) of Solar Panels Astronergy Solar 1890036 260 W 22 5,720 W $0.69
$3,960.00
Qty
Free Shipping Icon
Astronergy CHSM6612P-310 Silver Poly Pallet (25) of Solar Panels Astronergy Solar 1890011 310 W 25 7,750 W $0.61
$4,750.00
Qty
Free Shipping Icon
Solarland SLP190S-24 190 watt module Pallet (32) of Solar Panels Solarland 9433272 190 W 32 6,080 W $1.18
$7,200.00
Qty
Free Shipping Icon
SolarWorld SW295 Plus Silver Mono Pallet (30) of Solar Panels SolarWorld 1892031 295 W 30 8,850 W $0.95
$8,400.00
Qty
Free Shipping Icon

FREE SHIPPING SALE!
Click here to lock
in your savings!

SolarWorld SW340 XL Black/Black Mono Pallet (32) of Solar Panels SolarWorld 1891990 340 W 32 10,880 W $0.99
$10,720.00
Qty
Free Shipping Icon

FREE SHIPPING SALE!
Click here to lock
in your savings!

SolarWorld SW345 XL Silver Mono Pallet (32) of Solar Panels SolarWorld 1891994 345 W 32 11,040 W $0.97
$10,720.00
Qty
Free Shipping Icon

FREE SHIPPING SALE!
Click here to lock
in your savings!


Discount Prices on Solar Panels

Model Brand Part # Watts Minimum Quantity Price Per Watt Price
Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel Astronergy Solar 1971265 260 W 1 $0.77
$200.00
Qty
Astronergy CHSM6612P-310 Solar Panel Astronergy Solar 1977312 310 W 1 $0.68
$210.00
Qty
SolarWorld SW295 Plus Silver 5BB Mono Solar Panel SolarWorld 1922387 295 W 1 $1.02
$300.00
Qty
SolarWorld SW345 XL Silver Mono Solar Panel SolarWorld 1922345 345 W 1 $1.03
$355.00
Qty

Expandable Enphase Microinverter Starter Kits

Includes:

Expandable Enphase Microinverter Starter KitsPart No.Array Size (STC)Monthly Output (PTC)PanelsInverterPrice
260 W Grid-Tied Solar System with 1x Astronergy 260W Panels1890800260 W35 kWh1 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel1 Enphase M250 for 72 Cell Modules Inverter
$1,045.00
Qty
520 W Grid-Tied Solar System with 2x Astronergy 260W Panels1890805520 W70 kWh2 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel2 Enphase M250 for 72 Cell Modules Inverter
$1,348.00
Qty
780 W Grid-Tied Solar System with 3x Astronergy 260W Panels1890810780 W105 kWh3 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel3 Enphase M250 for 72 Cell Modules Inverter
$1,801.00
Qty
1 kW Grid-Tied Solar System with 4x Astronergy 260W Panels18908151.04 kW140 kWh4 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel4 Enphase M250 for 72 Cell Modules Inverter
$2,227.00
Qty
Back to Top

Grid-tie Solar Systems with True Off-grid Capability and Battery Backup

Equipped with OutBack Power's Radian inverters, these solar power grid-tie systems will power 120-volt and 240-volt circuits. Designed with true off-grid capability, you can charge your battery bank with solar panels or a gas generator. More versatile than the systems above, these systems also have a 'grid-assist mode' for folks mainly interested in being off the grid, but would like to have access to grid power.

Call a Wholesale Solar technician for help sizing these systems and choosing the correct battery bank size.

SystemPart No.Array Size (STC)Monthly Output (PTC)PanelsPrice
2.34 kW Grid‑Assisted Solar System with Outback Radian and 9 Astronergy 260 Panels18910602.34 kW315 kWh9 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$14,679.00
Qty
3.12 kW Grid‑Assisted Solar System with Outback Radian and 12x Astronergy 260 Panels18910673.12 kW420 kWh12 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$15,591.00
Qty
3.9 kW Grid‑Assisted Solar System with Outback Radian and 15x Astronergy 260 Panels18910713.9 kW524 kWh15 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$16,219.00
Qty
5.46 kW Grid‑Tied Battery Backup Solar System with Outback Power Center and 21x Astronergy 260 Panels18931215.46 kW734 kWh21 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$26,247.00
Qty
6.24 kW Grid‑Tied Battery Backup Solar System with Outback Power Center and 24x Astronergy 260 Panels18931246.24 kW839 kWh24 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$27,122.00
Qty
7.8 kW Grid‑Tied Battery Backup Solar System with Outback Power Center and 30x Astronergy 260 Panels18931307.8 kW1,049 kWh30 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$28,272.00
Qty
11.7 kW Grid‑Tied Battery Backup Solar System with Outback Radian and 45x Astronergy 260 Panels189101011.7 kW1,573 kWh45 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$44,293.00
Qty
15.6 kW Grid‑Tied Battery Backup Solar System with Outback Radian and 60x Astronergy 260 Panels189101515.6 kW2,098 kWh60 Astronergy VIOLIN ASM6610P-260(BF) Black Frame Poly Solar Panel
$49,519.00
Qty
Back to Top
Have you come to this site seeking information About Solar Panels? Solar technology? Photovoltaics? (PDF)

What follows is basic history about solar panels and information to help you know what solar panels to buy.

Solar Panels: Harvesting the Energy from our Sun
Virtually unlimited power is available from our nearest star, the Sun. In just one hour, our planet receives more energy from the sun than the entire world uses during an entire year. Electricity-producing solar panels have only been around for the last 60 years, yet they have completely transformed how we harness solar energy

In 1839, a nineteen year-old French physicist named Alexandre-Edmond Becquerel discovered the operating principle of the solar cell, known as the photovoltaic effect. It wasn’t until 1876 that this effect materialized into a viable method of producing electricity with the work of William Grylls Adams. He discovered that by illuminating a junction between selenium and platinum, a photovoltaic effect occurs; electricity could now be produced without moving parts.

Revolutionary as they may have been, the selenium solar cells were not efficient enough to power electrical equipment. That ability occurred in 1953 when a Bell Laboratories employee Gerald Pearson had the bright idea of making a solar cell with silicon instead of selenium. The New York Times heralded the discovery as “The beginning of a new era, leading eventually to the realization of harnessing the almost limitless energy of the sun for the uses of civilization”.

Just in time for the space race, the first solar panels made their debut in the satellite industry. Vanguard I, the first solar-powered satellite celebrated its 53rd birthday this year, setting mileage records and holding the title of being the oldest artificial satellite still in orbit.

The first solar modules were only efficient enough for space applications, where the Sun’s radiation is much stronger. Eventually satellite research paved the way for Earth-based technology. The 1990’s were pivotal years for photovoltaic technology. Innovations in solar cells allowed for greater efficiency while lowering the cost of production. Germany and Japan led the way with long-term solar power incentive programs helping lower the cost to the public, and spurring the growth of a robust Photovoltaic industry in both countries.

California Leads the Nation
In 2006, California made a major long-term commitment to solar power by passing the California Solar Initiative, a ten-year incentive program with the goal of installing 3,000 megawatts of solar panels on the equivalent of one million rooftops. California leads the nation in solar panel installations, as it currently has more photovoltaic systems installed than any other state. This incredible boom has taken place mostly due to California’s Renewable Portfolio Standard, which requires that 20 percent of the state’s electricity come from renewable resources by 2010. In 2008 the state decided that it was not moving fast enough in meeting these goals and enacted a feed-in tariff, requiring utility companies to buy back excess power produced by homeowner’s and private photovoltaic installations. In the same year, the state also raised the Renewable Portfolio Standard to 33 percent by 2020, greatly helping spur growth in the renewable energy industry.

How Solar Panels work
Photovoltaic solar modules are composed of multiple, interconnected solar cells, which effectively trap photon energy between layers of silicon wafers. Negatively charged electrons are then knocked loose from their atoms, allowing them to flow freely through the semiconductors. Separate diodes, and P-N junctions prevent reverse currents and reduce loss of power on partially shaded panels.

Since the flow of electrical current is going in one direction, like a battery, the electricity generated is called direct current (DC). Sunlight conversion rates are typically in the 5 to 18 percent range, with some laboratory experiments reaching efficiencies as high as 30 percent. Future possibilities include the development of multi-junction solar cells that are capable of harnessing a wider bandwidth of useable light. We are still considered to be in the “early” stages of solar cell technology.

Solar Panel Components
Photovoltaic solar panels are the main building block in a solar power system. Since each solar module produces a limited amount of power, installations usually consist of multiple panels, called an array. The array produces DC (direct current), which can be stored in batteries or instantly converted into AC (alternating current) required by conventional appliances.

Equipment that converts the power from DC to AC is known as an solar inverter, and they come in a few varieties, modified sine wave or pure sine wave. They are further classified based on which type of system it is to be used in, whether it is off-grid or grid interconnected. Recently the innovation of micro inverters has greatly simplified installations, and makes it easy to add on panels to an installation. Each solar module is paired with its own micro inverter, which then coverts the power directly at the panel. For off grid installations the use of a charge controller is necessary to properly manage the power harvest, charge the batteries, and prevent overcharging.

The greatest innovation in charge controllers would have to be the relatively new feature called maximum power point tracking (MPPT). This innovative method of charging batteries constantly monitors peak power voltage from the array and input voltage on the batteries adjusting amperage to compensate for the fluctuations. This provides the most efficient means to manage the power harvest. The function of MPPT charge controllers is analogous to the transmission of a car, keeping your charging system in the “right gear”. Other components of the solar system would include the wiring and mounting hardware, while some installations use a tracker that changes its tilt angle and direction throughout the day.

Types of Solar Panels
Solar panels are classified into three classes: mono-crystalline (single crystal), poly-crystalline (multiple crystals), or amorphous silicon. Mono-crystalline is indicative of the continuous and unbroken sample of silicon in which the cell is manufactured from. This method uses very pure silicon grown in a complex growth process, and then sliced into wafers that compose the individual cells. This was the first method used to manufacture solar cells, and are still highly regarded for their efficiency ratios.

Poly-crystalline panels are composed of many crystallites of varying size and orientation. These multi-crystalline panels are generally less expensive and slightly less efficient than mono-crystalline modules, yet lately the difference in efficiency is very small. Like their mono-crystalline counterpart, the cells are also cut into wafers that make up the individual cells of a solar panel.

Amorphous solar panels use the non-crystalline, allotropic form of silicon, in which a thin layer of this silicon substrate is applied to the back of a plate of glass. These panels are much cheaper and less energy efficient, yet they are more versatile in how they can be used. For example, amorphous solar panels can be manufactured into long sheets of roofing material. Thin Film solar panels also fall into the amorphous category. This type of cells can be mounted on a flexible backing, making them more suited for mobile applications.

Each of the solar panel types is estimated to last at least twenty-five years. Instead of stopping production completely, electricity production will decline a little, gradually, over decades. The longevity of a solar panel refers to the number of years before the unit starts producing only 80 percent of its original power rating. The industry standard for warranties is 20 to 25 years, although it is not uncommon for panels to produce adequate power for over 30 years.

Off Grid versus Grid tied
Solar panels are used extensively in rural areas, where access to the grid is non-existent or inaccessible. These installations are called off grid (or independent, stand-alone) solar power systems, and require the use of batteries to store the energy for use at night or on long stretches of overcast weather. The energy stored in the batteries leaves the batteries as DC electricity which can power DC appliances (as in RV’s) or be converted to alternating current (AC) for use with conventional appliances. Much like running your own mini utility company, this method gives you full independence from the national grid.

You can eliminate the cost of batteries by going with a system that connects right into your home’s main junction box and use the grid as your power source at night or on long stretches of inclement weather. These installations are known as grid-tied or grid-interconnected systems. This version of solar system enables you to sell any excess power you produce back to the utility companies who have chosen to support “net metering”. Once you are signed up on a net metering program, your utility company will have a smart meter installed known as a Time of Use Meter, which will actually run backwards when you are producing excess power. It is wise to keep in mind that Grid tied systems without a battery backup, are only functional when the grid is operational. Due to anti-islanding features on grid tied inverters, which protect utility workers from working on a live line, grid-tied systems without a battery back up will not continue to produce power during a power outage regardless of whether you have sunshine or not.

Since solar panels produce DC, or direct current, they must be coupled with a solar inverter to convert the energy from DC to AC, or alternating current. In a grid tied system this can be done by a large central inverter, or each solar panel can be outfitted with its own micro inverter. Once the power is converted to alternating current and its phase is synchronized with that of the grid, it is then tied in to your main junction box, which is ultimately interconnected to the national grid.